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6 Hilbert Spaces

6.1 The Fréchet-Riesz Representation Theorem

De�nition 6.1. LetX be an inner product space. A pair of vectors x, y ∈ X
is called orthogonal i� 〈x, y〉 = 0. We write x ⊥ y. A pair of subsets
A,B ⊆ X is called orthogonal i� x ⊥ y for all x ∈ A and y ∈ B. Moreover,
if A ⊆ X is some subset we de�ne its orthogonal complement to be

A⊥ := {y ∈ X : x ⊥ y ∀x ∈ A}.

Exercise 30. Let X be an inner product space.

1. Let x, y ∈ X. If x ⊥ y then ‖x‖2 + ‖y‖2 = ‖x+ y‖2.

2. Let A ⊆ X be a subset. Then A⊥ is a closed subspace of X.

3. A ⊆ (A⊥)⊥.

4. A⊥ = (spanA)
⊥
.

5. A ∩A⊥ ⊆ {0}.
Proposition 6.2. Let H be a Hilbert space, F ⊆ H a closed and convex

subset and x ∈ H. Then, there exists a unique element x̃ ∈ F such that

‖x̃− x‖ = inf
y∈F

‖y − x‖.

Proof. De�ne a := infy∈F ‖y−x‖. Let {yn}n∈N be a sequence in F such that
limn→∞ ‖yn − x‖ = a. Let ε > 0 and choose n0 ∈ N such that ‖yn − x‖2 ≤
a2 + ε for all n ≥ n0. Now let n,m ≥ n0. Then, using the parallelogram
equality of Theorem 2.39 we �nd

‖yn − ym‖2 = 2‖yn − x‖2 + 2‖ym − x‖2 − ‖yn + ym − 2x‖2

= 2‖yn − x‖2 + 2‖ym − x‖2 − 4

∥∥∥∥yn + ym
2

− x

∥∥∥∥2
≤ 2(a2 + ε) + 2(a2 + ε)− 4a2 = 4ε

This shows that {yn}n∈N is a Cauchy sequence which must converge to some
vector x̃ ∈ F with the desired properties since F is complete.

It remains to show that x̃ is unique. Suppose x̃, x̃′ ∈ F both satisfy the
condition. Then, by a similar use of the parallelogram equation as above,

‖x̃−x̃′‖2 = 2‖x̃−x‖2+2‖x̃′−x‖2−4

∥∥∥∥ x̃+ x̃′

2
− x

∥∥∥∥2 ≤ 2a2+2a2−4a2 = 0.

That is, x̃′ = x̃, completing the proof.
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Lemma 6.3. Let H be a Hilbert space, F ⊆ H a closed and convex subset,

x ∈ H and x̃ ∈ H. Then, the following are equivalent:

1. ‖x̃− x‖ = infy∈F ‖y − x‖

2. <〈x̃− y, x̃− x〉 ≤ 0 ∀y ∈ F

Proof. Suppose 2. holds. Then, for any y ∈ F we have

‖y − x‖2 = ‖(y − x̃) + (x̃− x)‖2

= ‖y − x̃‖2 + 2<〈y − x̃, x̃− x〉+ ‖x̃− x‖2 ≥ ‖x̃− x‖2.

Conversely, suppose 1. holds. Fix y ∈ F and consider the continuous
map [0, 1] → F given by t 7→ yt := (1− t)x̃+ ty. Then,

‖x̃− x‖2 ≤ ‖yt − x‖2 = ‖t(y − x̃) + (x̃− x)‖2

= t2‖y − x̃‖2 + 2t<〈y − x̃, x̃− x〉+ ‖x̃− x‖2.

Subtracting ‖x̃− x‖2 and dividing for t ∈ (0, 1] by t leads to,

1

2
t‖y − x̃‖2 ≥ <〈x̃− y, x̃− x〉.

This implies 2.

Lemma 6.4. Let H be a Hilbert space, F ⊆ H a closed subspace, x ∈ H
and x̃ ∈ F . Then, the following are equivalent:

1. ‖x̃− x‖ = infy∈F ‖y − x‖

2. 〈y, x̃− x〉 = 0 ∀y ∈ F

Proof. Exercise.

Proposition 6.5. Let H be a Hilbert space, F ⊆ H a closed proper subspace.

Then, F⊥ 6= {0}.

Proof. Since F is proper, there exists x ∈ H \ F . By Proposition 6.2 there
exists an element x̃ ∈ F such that ‖x̃−x‖ = infy∈F ‖y−x‖. By Lemma 6.4,
〈y, x̃− x〉 = 0 for all y ∈ F . That is, x̃− x ∈ F⊥.

Theorem 6.6 (Fréchet-Riesz Representation Theorem). Let H be a Hilbert

space. Then, the map Φ : H → H∗ given by (Φ(x))(y) := 〈y, x〉 for all

x, y ∈ H is anti-linear, bijective and isometric.
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Proof. The anti-linearity of Φ follows from the properties of the scalar prod-
uct. Observe that for all x ∈ H, ‖Φ(x)‖ = sup‖y‖=1 |〈y, x〉| ≤ ‖x‖ because of
the Schwarz inequality (Theorem 2.35). On the other hand, (Φ(x))(x/‖x‖) =
‖x‖ for all x ∈ H \{0}. Hence, ‖Φ(x)‖ = ‖x‖ for all x ∈ H, i.e., Φ is isomet-
ric. It remains to show that Φ is surjective. Let f ∈ H∗ \ {0}. Then ker f is
a closed proper subspace of H and by Proposition 6.5 there exists a vector
v ∈ (ker f)⊥ \ {0}. Observe that for all x ∈ H,

x− f(x)

f(v)
v ∈ ker f.

Hence,

〈x, v〉 =
〈
x− f(x)

f(v)
v +

f(x)

f(v)
v, v

〉
=

f(x)

f(v)
〈v, v〉

In particular, setting w := f(v)/(‖v‖2) we see that Φ(w) = f .

Corollary 6.7. Let H be a Hilbert space. Then, H∗ is also a Hilbert space.

Moreover, H is re�exive, i.e., H∗∗ is naturally isomorphic to H.

Proof. By Theorem 6.6 the spaces H and H ′ are isometric. This implies
in particular, that H ′ is complete that its norm satis�es the parallelogram
equality, i.e., that it is a Hilbert space. Indeed, it is easily veri�ed that the
inner product is given by

〈Φ(x),Φ(y)〉H′ = 〈y, x〉H ∀x, y ∈ H.

Consider the canonical linear map iH : H → H∗∗. It is easily veri�ed that
iH = Ψ ◦Φ, where Ψ : H∗ → H∗∗ is the corresponding map of Theorem 6.6.
Thus, iH is a linear bijective isometry, i.e., an isomorphism of Hilbert spaces.

6.2 Orthogonal Projectors

Theorem 6.8. Let H be a Hilbert space and F ⊆ H a closed subspace such

that F 6= {0}. Then, there exists a unique operator PF ∈ CL(H,H) with the

following properties:

1. PF |F = 1F .

2. kerPF = F⊥.

Moreover, PF also has the following properties:
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3. PF (H) = F .

4. PF ◦ PF = PF .

5. ‖PF ‖ = 1.

6. Given x ∈ H, PF (x) is the unique element of F such that ‖PF (x)−x‖ =
infy∈F ‖y − x‖.

7. Given x ∈ H, PF (x) is the unique element of F such that x− P (x) ∈
F⊥.

Proof. We de�ne PF to be the map x 7→ x̃ given by Proposition 6.2. Then,
clearly PF (H) = F and PF (x) = x if x ∈ F and thus PF ◦ PF = PF . By
Lemma 6.4 we have PF (x)− x ∈ F⊥ for all x ∈ H. Since F⊥ is a subspace
we have

(λ1PF (x1)− λ1x1) + (λ2PF (x2)− λ2x2) ∈ F⊥

for x1, x2 ∈ H and λ1, λ2 ∈ K arbitrary. Rewriting this we get,

(λ1PF (x1)− λ2PF (x2))− (λ1x1 + λ2x2) ∈ F⊥.

But Lemma 6.4 also implies that if given x ∈ H we have z − x ∈ F⊥ for
some z ∈ F , then z = PF (x). Thus,

λ1PF (x1)− λ2PF (x2) = PF (λ1x1 + λ2x2).

That is, PF is linear. Using again that x−PF (x) ∈ F⊥ we have x−PF (x) ⊥
PF (x) and hence the Pythagoras equality (Exercise 30.1)

‖x− PF (x)‖2 + ‖PF (x)‖2 = ‖x‖2 ∀x ∈ H.

This implies ‖PF (x)‖ ≤ ‖x‖ for all x ∈ H. In particular, PF is continuous.
On the other hand ‖PF (x)‖ = ‖x‖ if x ∈ F . Therefore, ‖PF ‖ = 1. Now
suppose x ∈ kerPF . Then, 〈y, x〉 = −〈y, PF (x) − x〉 = 0 for all y ∈ F and
hence x ∈ F⊥. That is, kerPF ⊆ F⊥. Conversely, suppose now x ∈ F⊥.
Then, 〈y, PF (x)〉 = 〈y, PF (x)−x〉 = 0 for all y ∈ F . Thus, PF (x) ∈ F⊥. But
we know already that PF (x) ∈ F . Since, F ∩ F⊥ = {0} we get PF (x) = 0,
i.e., x ∈ kerPF . Then, F⊥ ⊆ kerPF . Thus, kerPF = F⊥. This concludes
the proof the the existence of PF with properties 1, 2, 3, 4, 5, 6 and 7.

Suppose now there is another operator QF ∈ CL(H,H) which also has
the properties 1 and 2. We proceed to show that QF = PF . To this end,
consider the operator 1−PF ∈ CL(H,H). We then have (1−PF )(x) = x−
PF (x) ∈ F⊥ for all x ∈ H. Thus, (1−PF )(H) ⊆ F⊥. Since PF+(1−PF ) = 1
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and PF (H) = F we must have H = F + F⊥. Thus, given x ∈ H there are
x1 ∈ F and x2 ∈ F⊥ such that x = x1 + x2. By property 1 we have
PF (x1) = QF (x1) and by property 2 we have PF (x2) = QF (x2). Hence,
PF (x) = QF (x).

De�nition 6.9. Given a Hilbert space H and a closed subspace F , the
operator PF ∈ CL(H,H) constructed in Theorem 6.8 is called the orthogonal
projector onto the subspace F .

Corollary 6.10. Let H be a Hilbert space and F a closed subspace. Let

PF be the associated orthogonal projector. Then 1 − PF is the orthogonal

projector onto F⊥. That is, PF⊥ = 1− PF .

Proof. Let x ∈ F⊥. Then, (1 − PF )(x) = x since kerPF = F⊥ by The-
orem 6.8.1. That is, (1 − PF )|F⊥ = 1F⊥ . On the other hand, suppose
(1−PF )(x) = 0. By Theorem 6.8.1. and 3. this is equivalent to x ∈ F . That
is, ker(1 − PF ) = F . Applying Theorem 6.8 to F⊥ yields the conclusion
PF⊥ = 1− PF due to the uniqueness of PF⊥ .

Corollary 6.11. Let H be a Hilbert space and F a closed subspace. Then,

F = (F⊥)⊥.

Proof. Exercise.

De�nition 6.12. Let H1 and H2 be inner product spaces. Then, H1 ⊕2 H2

denotes the direct sum as a vector space with the inner product

〈x1 + x2, y1 + y2〉 := 〈x1, y1〉+ 〈x2, y2〉 ∀x1, x2 ∈ H1,∀y1, y2 ∈ H2.

Proposition 6.13. Let H1 and H2 be inner product spaces. Then, the topol-

ogy of H1 ⊕2 H2 agrees with the topology of the direct sum of H1 and H2 as

tvs. That is, it agrees with the product topology of H1 ×H2. In particular, if

H1 and H2 are complete, then H1 ⊕2 H2 is complete.

Proof. Exercise.

Corollary 6.14. Let H be a Hilbert space and F a closed subspace. Then,

H = F ⊕2 F
⊥.

Proof. Exercise.
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6.3 Orthonormal Bases

De�nition 6.15. Let H be a Hilbert space and S ⊆ H a subset such that
‖s‖ = 1 for all s ∈ S and such that 〈s, t〉 6= 0 for s, t ∈ S implies s = t.
Then, S is called an orthonormal system in H. Suppose furthermore that S
is maximal, i.e., that for any orthonormal system T in H such that S ⊆ T
we have S = T . Then, S is called an orthonormal basis of H.

Proposition 6.16. Let H be a Hilbert space and S an orthonormal system

in H. Then, S is linearly independent.

Proof. Exercise.

Proposition 6.17 (Gram-Schmidt). Let H be a Hilbert space and {xn}n∈I
be a linearly independent subset, indexed by the countable set I. Then,

there exists an orthogonal system {sn}n∈I , also indexed by I and such that

span{sn : n ∈ I} = span{xn : n ∈ I}.

Proof. If I is �nite we identify it with {1, . . . ,m} for some m ∈ N. Oth-
erwise we identify I with N. We construct the set {sn}n∈I iteratively. Set
s1 := x1/‖x1‖. (Note that xn 6= 0 for any n ∈ I be the assumption of linear
independence.) We now suppose that {s1, . . . , sk} is an orthonormal system
and that span{s1, . . . , sk} = span{x1, . . . , xk}. Set Xk := span{x1, . . . , xk}.
By linear independence yk+1 := xk+1 − PXk

(xk+1) 6= 0. Set sk+1 :=
yk+1/‖yk+1‖. Clearly, sk+1 ⊥ XK , i.e., {s1, . . . , sk+1} is an orthonormal
system. Moreover, span{s1, . . . , sk+1} = span{x1, . . . , xk+1}. If I is �nite
this process terminates, leading to the desired result. If I is in�nite, it is
clear that this process leads to span{sn : n ∈ N} = span{xn : n ∈ N}.

Proposition 6.18 (Bessel's inequality). Let H be a Hilbert space, m ∈ N
and {s1, . . . , sm} an orthonormal system in H. Then, for all x ∈ H,

m∑
n=1

|〈x, sn〉|2 ≤ ‖x‖2

Proof. De�ne y := x−
∑m

n=1〈x, sn〉sn. Then, y ⊥ sn for all n ∈ {1, . . . ,m}.
Thus, applying Pythagoras we obtain

‖x‖2 = ‖y‖2 +

∥∥∥∥∥
m∑

n=1

〈x, sn〉sn

∥∥∥∥∥
2

= ‖y‖2 +
m∑

n=1

|〈x, sn〉|2.

This implies the inequality.
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Lemma 6.19. Let H be a Hilbert space, S ⊂ H an orthonormal system and

x ∈ H. Then, Sx := {s ∈ S : 〈x, s〉 6= 0} is countable.

Proof. Exercise.Hint: Use Bessel's Inequality (Proposition 6.18).

Proposition 6.20 (Generalized Bessel's inequality). Let H be a Hilbert

space, S ⊆ H an orthonormal system and x ∈ H. Then∑
s∈S

|〈x, s〉|2 ≤ ‖x‖2.

Proof. By Lemma 6.19, the subset Sx := {s ∈ S : 〈x, s〉 6= 0} is countable.
If Sx is �nite we are done due to Proposition 6.18. Otherwise let α : N → Sx

be a bijection. Then, by Proposition 6.18
m∑

n=1

|〈x, sα(n)〉|2 ≤ ‖x‖2

For any m ∈ N. Thus, we may take the limit m → ∞ on the left hand side,
showing that the series converges absolutely and satis�es the inequality.

De�nition 6.21. Let X be a tvs and {xi}i∈I an indexed set of elements of
X. We say that the series

∑
i∈I xi converges unconditionally to x ∈ X i�

I0 := {i ∈ I : xi 6= 0} is countable and for any bijection α : N → I the sum∑∞
n=1 xα(n) converges to x.

Proposition 6.22. Let H be a Hilbert space and S ⊂ H an orthonormal

system. Then, P (x) :=
∑

s∈S〈x, s〉s converges unconditionally. Moreover,

P : x 7→ P (x) de�nes an orthogonal projector onto spanS.

Proof. Fix x ∈ H. We proceed to show that
∑

s∈S〈x, s〉s converges uncon-
ditionally. The set S can be replaced by the set Sx := {s ∈ S : 〈x, s〉 6= 0},
which is countable due to Lemma 6.19. If Sx is even �nite we are done. Oth-
erwise, let α : N → Sx be a bijection. Then, given ε > 0 by Proposition 6.20
there is n0 ∈ N such that

∞∑
n=n0+1

|〈x, sα(n)〉|2 < ε2.

For m > k ≥ n0 this implies using Pythagoras,∥∥∥∥∥
m∑

n=1

〈x, sα(n)〉sα(n) −
k∑

n=1

〈x, sα(n)〉sα(n)

∥∥∥∥∥
2

=

∥∥∥∥∥
m∑

n=k+1

〈x, sα(n)〉sα(n)

∥∥∥∥∥
2

=

m∑
n=k+1

|〈x, sα(n)〉|2 < ε2.
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So the sequence {
∑m

n=1〈x, sα(n)〉sα(n)}m∈N is Cauchy and must converge to
some element yα ∈ H since H is complete. Now let β : N → Sx be another
bijection. Then,

∑∞
n=1〈x, sβ(n)〉sβ(n) = yβ for some yβ ∈ H. We need to

show that yβ = yα. Let m0 ∈ N such that {α(n) : n ≤ n0} ⊆ {β(n) : n ≤
m0}. Then, for m ≥ m0 we have (again using Pythagoras)∥∥∥∥∥

m∑
n=1

〈x, sβ(n)〉sβ(n) −
n0∑
n=1

〈x, sα(n)〉sα(n)

∥∥∥∥∥
2

≤
∞∑

n=n0+1

|〈x, sα(n)〉|2 < ε2.

Taking the limit m → ∞ we �nd∥∥∥∥∥yβ −
n0∑
n=1

〈x, sα(n)〉sα(n)

∥∥∥∥∥ < ε.

But on the other hand we have,∥∥∥∥∥yα −
n0∑
n=1

〈x, sα(n)〉sα(n)

∥∥∥∥∥ < ε.

Thus, ‖yβ − yα‖ < 2ε. Since ε was arbitrary this shows yβ = yα proving the
unconditional convergence.

It is now clear that x 7→ P (x) yields a well de�ned map P : H → H.
From the de�nition it is also clear that P (H) ⊆ spanS. Let s ∈ S. Then,

〈x− P (x), s〉 = 〈x, s〉 − 〈P (x), s〉 = 〈x, s〉 − 〈x, s〉 = 0.

That is, x−P (x) ∈ S⊥ = spanS
⊥
. By Theorem 6.8.7 this implies that P is

the orthogonal projector onto spanS.

Proposition 6.23. Let H be a Hilbert space and S ⊂ H an orthonormal

system. Then, the following are equivalent:

1. S is an orthonormal basis.

2. Suppose x ∈ H and x ⊥ S. Then, x = 0.

3. H = spanS.

4. x =
∑

s∈S〈x, s〉s ∀x ∈ H.

5. 〈x, y〉 =
∑

s∈S〈x, s〉〈s, y〉 ∀x, y ∈ H.

6. ‖x‖2 =
∑

s∈S |〈x, s〉|2 ∀x ∈ H.
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Proof. 1.⇒2.: If there exists x ∈ S⊥ \ {0} then S ∪ {x/‖x‖} would be an
orthonormal system strictly containing S, contradicting the maximality of

S. 2.⇒3.: Note that H = {0}⊥ = (S⊥)⊥ = (spanS
⊥
)⊥ = spanS. 3.⇒4.:

1(x) = PspanS(x) =
∑

s∈S〈x, s〉s by Proposition 6.22. 4.⇒5.: Apply 〈·, y〉.
Since the inner product is continuous in the left argument, its application
commutes with the limit taken in the sum. 5.⇒6.: Insert y = x. 6.⇒1.:
Suppose S was not an orthonormal basis. Then there exists y ∈ H \ {0}
such that y ∈ S⊥. But then ‖y‖2 =

∑
s∈S |〈y, s〉|2 = 0, a contradiction.

Proposition 6.24. Let H be a Hilbert space. Then, H admits an orthonor-

mal basis.

Proof. Exercise.Hint: Use Zorn's Lemma.

Proposition 6.25. Let H be a Hilbert space and S ⊂ H an orthonormal

basis of H. Then, S is countable i� H is separable.

Proof. Suppose S is countable. Let QS denote the set of linear combinations
of elements of S with coe�cients in Q. Then, QS is countable and also dense
in H by using Proposition 6.23.3, showing that H is separable. Conversely,
suppose that H is separable. Observe that ‖s − t‖ =

√
2 for s, t ∈ S such

that s 6= t. Thus, the open balls B√
2/2(s) for di�erent s ∈ S are disjoint.

Since H is separable there must be a countable subset of H with at least one
element in each of these balls. In particular, S must be countable.

In the following, we denote by |S| the cardinality of a set S.

Proposition 6.26. Let H be a Hilbert space and S, T ⊂ H orthonormal

basis of H. Then, |S| = |T |.

Proof. If S or T is �nite this is clear from linear algebra. Thus, suppose
that |S| ≥ |N| and |T | ≥ |N|. For s ∈ S de�ne Ts := {t ∈ T : 〈s, t〉 6= 0}.
By Lemma 6.19, |Ts| ≤ |N|. Proposition 6.23.2 implies that T ⊆

⋃
s∈S Ts.

Hence, |T | ≤ |S| · |N| = |S|. Using the same argument with S and T
interchanged yields |S| ≤ |T |. Therefore, |S| = |T |.

Proposition 6.27. Let H1 be a Hilbert space with orthonormal basis S1 ⊂
H1 and H2 a Hilbert space with orthonormal basis S2 ⊂ H2. Then, H1 is

isomorphic to H2 i� |S1| = |S2|.

Proof. Exercise.
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Exercise 31. Let S be a set. De�ne `2(S) to be the set of maps f : S → K
such that

∑
s∈S |f(s)|2 converges absolutely. (a) Show that `2(S) forms a

Hilbert space with the inner product 〈f, g〉 :=
∑

s∈S f(s)g(s). (b) Let H be
a Hilbert space with orthonormal basis S ⊂ H. Show that H is isomorphic
to `2(S) as a Hilbert space.

Example 6.28. Recall the Banach spaces of Example 3.55, where X is a
measurable space with measure µ. The space L2(X,µ,K) is a Hilbert space
with inner product

〈f, g〉 :=
∫
X
fg.

Exercise 32. Let S1 be the unit circle with the algebra of Borel sets and µ
the Lebesgue measure on S1. Parametrize S1 with an angle φ ∈ [0, 2π) in
the standard way. Show that {φ 7→ einφ/

√
2π}n∈Z is an orthonormal basis

of L2(S1, µ,C).

Exercise 33. Equip the closed interval [−1, 1] with the algebra of Borel sets
and the Lebesgue measure µ. Consider the set of monomials {xn}n∈N as func-
tions [−1, 1] → C in L2([−1, 1], µ,C). (a) Show that the set {xn}n∈N is lin-
early independent and dense. (b) Suppose an orthonormal basis {sn}n∈N of
functions sn ∈ L2([−1, 1], µ,C) is constructed using the algorithm of Gram-
Schmidt (Proposition 6.17) applied to {xn}n∈N. De�ne pn :=

√
2/(2n+ 1)sn.

Show that

(n+ 1)pn+1(x) = (2n+ 1)xpn(x)− npn−1(x) ∀x ∈ [−1, 1],∀n ∈ N \ {1}.

6.4 Operators on Hilbert Spaces

De�nition 6.29. LetH1,H2 be Hilbert spaces and Φi : Hi → H∗
i the associ-

ated anti-linear bijective isometries from Theorem 6.6. Let A ∈ CL(H1,H2)
and A∗ : H∗

2 → H∗
1 its adjoint according to De�nition 4.27. We say that

A? ∈ CL(H2,H1) given by A? := Φ−1
1 ◦A∗ ◦ Φ2 is the adjoint operator of A

in the sense of Hilbert spaces.

In the following of this section, adjoint will always refer to the adjoint in
the sense of Hilbert spaces.

Proposition 6.30. Let H1,H2 be Hilbert spaces and A ∈ CL(H1, H2).
Then, A? is the adjoint of A i�

〈Ax, y〉H2 = 〈x,A?y〉H1 ∀x ∈ H1, y ∈ H2.
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Proof. Exercise.

In the following, we will omit subscripts indicating to which Hilbert space
a given inner product belongs as long as no confusion can arise.

Proposition 6.31. Let H1, H2,H3 be Hilbert spaces, A,B ∈ CL(H1,H2),
C ∈ CL(H2,H3), λ ∈ K.

1. (A+B)? = A? +B?.

2. (λA)? = λA?.

3. (C ◦A)? = A? ◦ C?.

4. (A?)? = A.

5. ‖A?‖ = ‖A‖.

6. ‖A ◦A?‖ = ‖A? ◦A‖ = ‖A‖2.

7. kerA = (A?(H2))
⊥ and kerA? = (A(H1))

⊥.

Proof. Exercise.

De�nition 6.32. Let H1,H2 be Hilbert spaces and A ∈ CL(H1,H2). Then,
A is called unitary i� A is an isometric isomorphism.

Remark 6.33. It is clear that A ∈ CL(H1,H2) is unitary i�

〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ H1.

Equivalently, A? ◦A = 1H1 or A ◦A? = 1H2 .

De�nition 6.34. Let H be a Hilbert space and A ∈ CL(H,H). A is called
self-adjoint i� A = A?. A is called normal i� A? ◦A = A ◦A?.

Proposition 6.35. Let H be a Hilbert space and A ∈ CL(H,H) self-adjoint.
Then,

‖A‖ = sup
‖x‖≤1

|〈Ax, x〉|.

Proof. Set M := sup‖x‖≤1 |〈Ax, x〉|. Since |〈Ax, x〉| ≤ ‖Ax‖‖x‖ ≤ ‖A‖‖x‖2,
it is clear that ‖A‖ ≥ M . We proceed to show that ‖A‖ ≤ M . Given
x, y ∈ H arbitrary we have

〈A(x+ y), x+ y〉 − 〈A(x− y), x− y〉 = 2〈Ax, y〉+ 2〈Ay, x〉
= 2〈Ax, y〉+ 2〈y,Ax〉 = 4<〈Ax, y〉.
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Thus,

4<〈Ax, y〉 ≤ |〈A(x+ y), x+ y〉|+ |〈A(x− y), x− y〉|
≤ M(‖x+ y‖2 + ‖x− y‖2) = 2M(‖x‖2 + ‖y‖2).

The validity of this for all x, y ∈ H in turn implies

<〈Ax, y〉 ≤ M‖x‖‖y‖ ∀x, y ∈ H.

Replacing x with λx for a suitable λ ∈ K with |λ| = 1 yields

|〈Ax, y〉| ≤ M‖x‖‖y‖ ∀x, y ∈ H.

Inserting now y = Ax we can infer

‖Ax‖ ≤ M‖x‖∀x ∈ H,

and hence ‖A‖ ≤ M , concluding the proof.

Proposition 6.36. Let H be a complex Hilbert space and A ∈ CL(H,H).
Then, the following are equivalent:

1. A is self-adjoint.

2. 〈Ax, x〉 ∈ R for all x ∈ H.

Proof. 1.⇒2.: For all x ∈ H we have 〈Ax, x〉 = 〈x,Ax〉 = 〈Ax, x〉. 2.⇒1.:
Let x, y ∈ H and λ ∈ C. Then,

〈A(x+ λy), x+ λy〉 = 〈Ax, x〉+ λ〈Ax, y〉+ λ〈Ay, x〉+ |λ|2〈Ay, y〉.

By assumption, the left-hand side as well as the �rst and the last term on
the right-hand side are real. Thus, we may equating the right hand side with
its complex conjugate yielding,

λ〈Ax, y〉+ λ〈Ay, x〉 = λ〈y,Ax〉+ λ〈x,Ay〉.

Since λ ∈ C is arbitrary, the terms proportional to λ and those proportional
to λ have to be equal separately, showing that A must be self-adjoint.

Corollary 6.37. Let H be a complex Hilbert space and A ∈ CL(H,H) such
that 〈Ax, x〉 = 0 for all x ∈ H. Then, A = 0.

Proof. By Proposition 6.36, A is self-adjoint. Then, by Proposition 6.35,
‖A‖ = 0.
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Exercise 34. Give a counter example to the above statement for the case
of a real Hilbert space.

Proposition 6.38. Let H be a Hilbert space and A ∈ CL(H,H) normal.

Then,

‖Ax‖ = ‖A?x‖ ∀x ∈ H.

Proof. For all x ∈ H we have,

0 = 〈(A? ◦A−A ◦A?)x, x〉 = 〈Ax,Ax〉 − 〈A?x,A?x〉 = ‖Ax‖2 − ‖A?x‖2.

Proposition 6.39. Let H be a Hilbert space and A ∈ CL(H,H) with A 6= 0
a projection operator, i.e., A ◦A = A. Then, the following are equivalent:

1. A is an orthogonal projector.

2. ‖A‖ = 1.

3. A is self-adjoint.

4. A is normal.

5. 〈Ax, x〉 ≥ 0 for all x ∈ H.

Proof. 1.⇒2.: This follows from Theorem 6.8.5. 2.⇒1.: Let x ∈ kerA,
y ∈ F := A(H) and λ ∈ K. Then,

‖λy‖2 = ‖A(x+ λy)‖2 ≤ ‖x+ λy‖2 = ‖x‖2 + 2<〈x, λy〉+ ‖λy‖2.

Since λ ∈ K is arbitrary we may conclude 〈x, y〉 = 0. That is, kerA ⊆ F⊥.
On the other hand set F̃ := (1−A)(H) and note that F̃ ⊆ kerA. But since
1 = A + (1 − A) we must have F + F̃ = H. Given F̃ ⊆ F⊥ this implies
F̃ = F⊥ and hence kerA = F⊥. Observe also that F is closed since A is a
projector and hence F = ker(1 − A). By Theorem 6.8, A is an orthogonal
projector. 1.⇒3.: Using Theorem 6.8.2 and 6.8.7, observe for x, y ∈ H:

〈Ax, y〉 = 〈Ax,Ay− (Ay− y)〉 = 〈Ax,Ay〉 = 〈Ax− (Ax−x), Ay〉 = 〈x,Ay〉.

3.⇒4.: Immediate. 4.⇒1.: Combining Proposition 6.38 with Proposition 6.31
we have kerA = kerA? = (A(H))⊥. Note also that A(H) is closed since A
is a projector. Thus, by Theorem 6.8, A is an orthogonal projection. 3.⇒5.:
For x ∈ H observe

〈Ax, x〉 = 〈A ◦Ax, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 ≥ 0.
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5.⇒1.: Let x ∈ kerA and y ∈ F := A(H). Then,

0 ≤ 〈A(x+ y), x+ y〉 = 〈y, x+ y〉 = ‖y‖2 + 〈y, x〉.

Since x can be scaled arbitrarily, we must have 〈y, x〉 = 0. Thus, kerA ⊆ F⊥.
As above we may conclude that A is an orthogonal projector.

Exercise 35. Let X be a normed vector space and Y a separable Hilbert
space. Show that KL(X,Y ) = CL�n(X,Y ). [Hint: Use Proposition 4.36 and
show that the assumptions of Proposition 4.37 can be satis�ed.]

Exercise 36. Let w ∈ C([0, 1],R) and consider the map 〈·, ·〉w : C([0, 1],C)×
C([0, 1],C) → C given by

〈f, g〉w :=

∫ 1

0
f(x)g(x)w(x)dx.

1. Give necessary and su�cient conditions for 〈·, ·〉w to be a scalar prod-
uct.

2. When is the norm induced by 〈·, ·〉w equivalent to the norm induced
by the usual scalar product

〈f, g〉 :=
∫ 1

0
f(x)g(x)dx?

Exercise 37. Let S be a set and H ⊆ F (S,K) a subspace of the functions
on S with values in K. Suppose that an inner product is given on H that
makes it into a Hilbert space. Let K : S × S → K and de�ne Kx : S → K
by Kx(y) := K(y, x). Then, K is called a reproducing kernel i� Kx ∈ H for
all x ∈ S and f(x) = 〈f,Kx〉 for all x ∈ S and f ∈ H. Show the following:

1. If a reproducing kernel exists, it is unique.

2. A reproducing kernel exists i� the topology of H is �ner than the
topology of pointwise convergence.

3. If K is a reproducing kernel, then span({Kx}x∈S) is dense in H.

4. Let H be the two-dimensional subspace of L2([0, 1],K) consisting of
functions of the form x 7→ ax+ b. Determine its reproducing kernel.


